Liquid fuel synthesis via CO2 hydrogenation by coupling homogeneous and heterogeneous catalysis
نویسندگان
چکیده
•CO2 hydrogenation by coupling homogeneous and heterogeneous catalysis•The reaction is conducted at low temperature with high C5+ selectivity•The activity comparable to that of the reported Ru0-catalyzed FTS CO2 a major greenhouse gas, as well cheap, nontoxic, renewable C1 resource. As clean reductant, H2 can be produced from water energy, such wind, hydro, solar energy. Production liquid fuel promising route solve ever-increasing environmental social challenges society. This usually proceeds through two consecutive reactions accelerated catalysts. Because thermodynamic limitations cascade reactions, catalysts suffer selectivity. To overcome barrier current technology, we coupled catalysis in promoting respectively, outstanding results were achieved. Synthesis (C5+ hydrocarbons) via generally involves reverse gas shift (RWGS) Fischer-Tropsch synthesis (FTS) over (above 300°C) Here, report production RuCl3 Ru0 catalysts, which proceeded lowest so far (180°C) reached highest selectivity date (71.1%). The TOF 9.5 h?1, catalyzed using syngas. Detailed study indicates synergy key for performance. Transformation into value-added chemicals great importance sustainable society.1He M. Sun Y. Han B. Green carbon science: scientific basis integrating resource processing, utilization, recycling.Angew. Chem. Int. Ed. Engl. 2013; 52: 9620-9633Crossref PubMed Scopus (558) Google Scholar, 2Artz J. Müller T.E. Thenert K. Kleinekorte Meys R. Sternberg A. Bardow Leitner W. Sustainable conversion dioxide: an integrated review life cycle assessment.Chem. Rev. 2018; 118: 434-504Crossref (882) 3Liu Q. Wu L. Jackstell Beller Using dioxide building block organic synthesis.Nat. Commun. 2015; 6: 5933Crossref (1202) 4Aresta Carbon Dioxide Chemical Feedstock. Wiley-VCH Verlag GmbH, 2010Crossref (17) 5Qian Zhang Cui acetic acid methanol hydrocarboxylation H2.Nat. 2016; 7: 11481Crossref (91) 6Wang Qian Bediako B.B.A. Wang Z. Liu H. higher carboxylic acids ethers, 2019; 10: 5395Crossref (16) 7Cui He Ma T. Yang G. Bromide promoted alcohols Ru-Co catalyst.Chem. Sci. 5200-5205Crossref 8He Meng Zhou Song Water- enhanced Pt/Co3O4 catalyst under milder conditions.Angew. 55: 737-741Crossref (130) 9Asare Shen X. Shi Tong S. Ru-catalyzed homologation ionic liquid.Green 21: 4152-4158Crossref Scholar energy.10Higuita Cano M.H. Agbossou Kelouwani Dubé Experimental evaluation power management system hybrid energy hydrogen production.Renew. Energy. 2017; 113: 1086-1098Crossref In past decades, advances have been focused on synthesizing products.11Álvarez Bansode Urakawa Bavykina A.V. Wezendonk T.A. Makkee Gascon Kapteijn F. Challenges greener formates/formic acid, methanol, DME heterogeneously processes.Chem. 117: 9804-9838Crossref (590) 12Klankermayer Wesselbaum Beydoun Selective catalytic combination hydrogen: chess interface chemistry.Angew. 7296-7343Crossref (501) 13Jessop P.G. Joó Tai C.C. Recent dioxide.Coord. 2004; 248: 2425-2442Crossref (589) 14Kattel Ramírez P.J. Chen J.G. Rodriguez J.A. P. Active sites Cu/ZnO catalysts.Science. 355: 1296-1299Crossref (721) 15Li Xu Li Lin Deng Ge C. et al.Tuning iridium/cerium oxide strong metal-support interaction.Angew. 56: 10761-10765Crossref (234) 16Wang Zheng Wei Evans D.G. Duan site dependent mechanism Ru/CeO2 toward methanation.J. Am. Soc. 138: 6298-6305Crossref (297) Hydrocarbons containing more than five carbons (C5+) are commonly used fuel, gasoline, diesel, kerosene. Besides well-established chemistry hydrocarbons syngas, direct CO H2O was also realized.17Xu Zhao Xie al.Direct fuels mild conditions.Nat. 1389Crossref (15) Hydrogenation but challenging. It generate subsequent (FTS).18He CO2.Proc. Natl. Acad. USA. 116: 12654-12659Crossref (60) 19Prieto oxygenates: kinetic bounds progress catalysis.ChemSusChem. 1056-1070Crossref (93) 20Marques Mota F.M. Kim D.H. From methanation ambitious long-chain hydrocarbons: alternative paving path sustainability.Chem. 48: 205-259Crossref 21Guo Tsubaki N. valuable C2+ hydrocarbons.J. Mater. 23244-23262Crossref 22Choi Y.H. Jang Y.J. Park W.Y. Lee Choi S.H. J.S. synthesis: new carbon-neutral fuels.Appl. Catal. 202: 605-610Crossref (124) 23Wei Yao Wen Fang Guo Directly converting gasoline fuel.Nat. 8: 15174Crossref (467) 24Gao Bu Dang Zhong Qiu Cai bifunctional catalyst.Nat. 9: 1019-1024Crossref (458) However, thermodynamically stable chemically inert molecule, RWGS endothermic needs temperature,25Su Huang Designing highly selective high-temperature endurable catalysts: recent future directions.J. Energy 26: 854-867Crossref (87) whereas exothermic tends inhibit favor secondary products.26Dry M.E. process: 1950–2000.Catal. Today. 2002; 71: 227-241Crossref (1635) Scholar,27Maitlis P.M. Zanotti V. role electrophilic species reaction.Chem. 2009; 13: 1619-1634Crossref (116) Recently, Na-Fe3O4/HZSM-5 multifunctional catalyst23Wei In2O3/HZSM-5 catalyst24Gao excellent flow reactors above 320°C. shown Co6/MnOx could effectively accelerate reaction.18He Although important achieved, properties still restrict performance this route. whole, temperatures 300°C), selectivities total products (<65%). Moreover, considerable (20%?50%) remains final product. Without doubt, novel ideas efficient desirable. known their efficiency temperature. If catalyst, may overcome. Enlightened idea, discovered homogeneously batch reactor (Figure 1). 1-methyl-2-pyrrolidinone (NMP) solvent, where LiCl LiI utilized cocatalyst promoter, respectively. 180°C, much lower those literature (Table S1). (C5-C28 n-paraffins) reach 71.1%, previously. turnover frequency (TOF) best level catalyst. all n-paraffins, has not before hydrogenation. know, first work combine produce Ru (Ru0) prepared simple reduction NaBH4 water. particles dispersed size about 3–5 nm (Figures S1 S2). N2 adsorption test indicated Brunauer–Emmett–Teller surface area 5.6 m2/g S3). X-ray diffraction (XRD), photoelectron spectroscopy (XPS) absorption fine structure (XAFS) data coincided S4–S6). find suitable screened different systems proceed efficiently RuCl3/Ru0 promoter solvent 180°C (entry C5-C28 confirmed GC-MS (Agilent-7890B-5977A), comparing retention times standards chromatography (GC) traces S7 S8). n-paraffins product 71.1 C-mol %, CO/H2 monometallic nanocatalyst.28Xiao C.X. Z.P. Kou Yan Aqueous-phase ruthenium nanocluster catalyst.Angew. 2008; 47: 746-749Crossref (168) Ru-based CO,28Xiao 29Li W.-Z. J.-X. Gu S.-Y. Si Su H.-Y. C.-H. W.-X. al.Chemical insights design development face-centered cubic synthesis.J. 139: 2267-2276Crossref (99) 30Long H.C. Turner M.L. Fornasiero Kašpar Graziani Maitlis Vinylic initiation silica catalysts.J. 1997; 167: 172-179Crossref (48) (mostly methane) when they hydrogenation.16Wang Scholar,31Kim Debecker D.P. Devred Dubois Sanchez Sassoye Ru/TiO2 effect mixing anatase rutile TiO2 supports.Appl. 220: 615-625Crossref (96) 32Roldán Marco García-Bordejé E. Function support metal loading nanoparticles supported nanofibers.ChemCatChem. 1347-1356Crossref (20) 33Kwak J.H. Kovarik Szanyi Ru/Al2O3 cluster dependence selectivity.ACS 3: 2449-2455Crossref (253) fact, Figure 2 shows detailed n-paraffin distribution Anderson-Schulz-Flory plot. Interestingly, totally no or other byproduct observed. hydrogenation, contained various kinds compounds, olefins, aromatics, CO, branched paraffins, naphthene, and/or oxygenates.18He chain length paraffins followed statistics, growth probability (?) 0.83, agreed fact longer chains work.Table 1Hydrogenation systemsEntryCatalystCo-catalystPromoterSolventSelectivity (C-mol %)TOFaTOF denotes moles consumption per mole hour. (h-1)COC1-4C5+CH3OH1bThe CH4 17.5 C2-4 11.4 %.RuCl3, Ru0LiClLiINMP028.971.109.52Ru0--NMP0100.0003.63Ru0LiClLiINMP0100.0004.34RuCl3--NMP0100.00025.35cThe solution after transparent clear, indicating reaction.RuCl3LiClLiINMP84.810.205.0122.86RuCl3, Ru0--NMP0100.0003.77RuCl3, Ru0LiCl-NMP091.98.107.98RuCl3, Ru0-LiINMP0100.0006.69RuBr3, Ru0LiClLiINMP043.156.906.910RuI3, Ru0LiClLiINMP076.923.106.811Ru2(CO)6Cl4, Ru0LiClLiINMP034.066.007.912Ru3(CO)12, Ru0LiClLiINMP052.847.206.413RuCl3, Ru0NaClLiINMP066.833.206.014RuCl3, Ru0KClLiINMP075.324.701.915RuCl3, Ru0AlCl3LiINMP084.016.001.316RuCl3, Ru0[Bmim]ClLiINMP58.321.020.707.517RuCl3, Ru0LiBrLiINMP042.957.108.318RuCl3, Ru0LiBF4LiINMP092.17.901.519RuCl3, Ru0LiClNaINMP047.352.707.820RuCl3, Ru0LiClKINMP062.337.706.721RuCl3, Ru0LiClLiBrNMP065.334.709.822RuCl3, Ru0LiClLiIDMI040.659.405.223RuCl3, Ru0LiClLiIToluene0100.0000.224RuCl3, Ru0LiClLiISqualane084.915.100.425RuCl3, Ru0LiClLiIH2O0100.0000.226dCO2 replaced MPa CO.Ru0--NMP-23.476.603.127cThe reaction.RuCl3LiCl-NMP61.814.6023.6110.728cThe reaction.RuCl3-LiINMP81.914.103.980.029dCO2 CO.Ru0LiCl-NMP-7.292.802.230dCO2 CO.Ru0-LiINMP-27.572.503.431dCO2 CO.Ru0LiClLiINMP-19.480.602.432cThe reaction.,dCO2 CO.RuCl3LiClLiINMP-25.0075.014.733dCO2 CO.,e50 ?L added system.Ru0LiClLiINMP-67.432.6-1.0Reaction conditions: 3 ?mol 37 (based metal), 0.75 mmol cocatalyst, 0.4 mL 5 (at room temperature), 180 oC, 12 h.a hour.b %.c reaction.d CO.e 50 system. Open table tab Reaction h. Both necessary When it only methane (entries 2, 3). situ reduced H2, sole formed 4). together RuCl3, very rate 5). suggesting reaction. photos solutions given S9. binary lithium halides required halide, detected 6). reaction, increased minor 7). acted RuCl3/Ru0. 6, 8), RuCl3/Ru0/LiCl, considerably 1, Hence target Based Ru0/LiCl/LiI, tested precursors i.e., RuBr3, RuI3, Ru2(CO)6Cl4, Ru3(CO)12. order: RuCl3> RuBr3> RuI3 9, 10). showed Cl? ligand eminent further verified control Ru2(CO)6Cl4 Ru3(CO)12, respectively 11, 12). We tried cations (Na+, K+, Al3+, [Bmim]+) anions (Br-, BF4-), most appropriate 13–18). promoters (NaI, KI, LiBr), demonstrated 19–21). cocatalysts promoters, Li+ proved cationic species. cation became larger, both decreased evidently 13–15, 19, 20). crucial 1,3-dimethyl-2-imidazolidinone (DMI), squalane, toluene, water, possess molecular structure, solubility, physico-chemical properties. For example, DMI similar NMP, squalane property products, toluene aromatic compound dissolve common proton solvent. After screening solvents, found NMP effective 22–25). weak Lewis base, stabilize absorb acidic CO2.34Gholami Azizi Peyghambarzadeh S.M. Bohloul M.R. modelling experimental diffusion coefficient N-methyl pyrolidone.Sep. Technol. 2435-2442Crossref (3) would like mention observed bases, triethylamine, dimethyl formamide (DMF), pyridine, solvents. organometallic even small modification cause large change pattern processes solution.35Gutmann Solvent effects reactivities compounds.Coord. 1976; 18: 225-255Crossref (772) cyclic amide, DMI, simultaneously facilitate C-C bond formation.36Wang Asare Efficient ethanol temperature.Green 589-596Crossref word, consisted RuCl3/Ru0/LiCl/LiI optimized system, studied impact pressure dosage At fixed ratio (1/1), elevating 4 10 1–4). less sensitive CO2/H2 affected optimal 1/1 4, did take place, took part 8, 9). results. 40 ?mol, 3/37 10–12). ratio, 13, 14). short, temperature) dosages Ru0. 3A demonstrates LiCl, produced. increase dosage, optimal. 3B). halogen ligands transition catalysis. inhibition too attributed occupation active excess I?. 3C illustrates 120°C, (> 80%), amount (about 5%) paraffin rose dramatically increasing % h?1. Beyond minor. Thus, 180°C. time course 3D. appeared rapidly beginning speed, then generated steady rate. With passing time, consumed, continuously. h, up, %. obviously, slower washed acetone dried vacuum oven 50°C directly next run. recycling revealed cycles S10). transmission electron microscopy (TEM), scanning (STEM), XRD, XPS, XAFS characterizations particle size, crystal alter obviously during S1, S2, stably catalyze gaseous sample released, determined GC. removed 70°C, reactant recharged start had obvious decrease S11). stability determining contents components (cationic Ru, Li+, Cl?, I?) presence halides, promote CO. although catalyst.28Xiao Scholar,29Li Inspired this, remarkable entry 26). These that, work, pathway 3D). scheme 4. trace began form 1 induction period comparison, time. electrospray ionization mass spectrometry (ESI-MS) immediately converted carboyl halide kept S12). Nearly operated reactors.25Su Scholar,26Dry lies elegant reactor. Synergy success work. RuCl3-catalyzed LiI, entries 27, 28). I? accelerating Compared inhibiting byproduct. adopted together, markedly improved Obviously, synergistic existed between indispensable situ, methane, instead adding 26, 29). lead fraction COad adsorbed atoms coordination numbers, reaction.37González-Carballo J.M. Pérez-Alonso F.J. García-García Ojeda Fierro J.L.G. Rojas In-situ promotional chlorine Ru/ Al2O3.J. 332: 177-186Crossref little 30), RuCl3/Ru0/LiCl better LiBr, played enhancing 21). ascribed its larger ion stronger nucleophilicity.38Maitlis Haynes James B.R. Catellani Chiusoli G.P. Iodide reactions.Dalton Trans. 2004: 3409-3419Crossref (71) cleavage basic step strongly alkali metals.27Maitlis additives improve suppress formation olefins oxygenates reaction.39Wang Xiao D. aqueous-phase nanoparticle catalyst.Catal. 2012; 183: 143-153Crossref (30) discussed above, acidity.5Qian remarkably affect possesses donating ability, reaction.40Tsuchiya J.-D. Tominaga K.-I. Reverse water-gas mononuclear complexes.ACS 2865-2868Crossref (52) Only NMP. Whereas, olefin (i.e., aldehyde alcohol) solvents.28Xiao another peculiar 32). produced, slowly tests participate inhibited 31, 33). Therefore, if should retained product, lower. But 31). Figures 3D suggested formed. nearly same contents, explains consumed completely contribution high-efficiency condition catalysis, up date, reactions. More mechanistic discussions reaction40Tsuchiya 41Li Theoretical investigation carbonyl complexes.Catal. Surv. Asia. 185-197Crossref (6) 42Tominaga Sasaki Hagihara Watanabe Saito anions.Chem. Lett. 1994; 23: 1391-1394Crossref 43Tominaga Ethylene oxide-mediated complexes.Energy. 22: 169-176Crossref (7) Ru0-accelerated reaction17Xu 28Xiao Scholar,37González-Carballo Scholar,39Wang literature. summary, synthesized consisting RuCl3-Ru0-LiCl-LiI exhibited opens avenue high-efficient condition. believe protocol some systems.
منابع مشابه
Conversion of CO2 via Visible Light Promoted Homogeneous Redox Catalysis
This review gives an overview on the principles of light-promoted homogeneous redox catalysis in terms of applications in CO2 conversion. Various chromophores and the advantages of different structures and metal centers as well as optimization strategies are discussed. All aspects of the reduction catalyst site are restricted to CO2 conversion. An important focus of this review is the question ...
متن کاملHeterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions.
The catalytic reduction of carboxylic acid derivatives has witnessed a rapid development in recent years. These reactions, involving molecular hydrogen as the reducing agent, can be promoted by heterogeneous and homogeneous catalysts. The milestone achievements and recent results by both approaches are discussed in this Review. In particular, we focus on the mechanistic aspects of the catalytic...
متن کاملA conceptual translation of homogeneous catalysis into heterogeneous catalysis: homogeneous-like heterogeneous gold nanoparticle catalyst induced by ceria supporter.
Translation of homogeneous catalysis into heterogeneous catalysis is a promising solution to green and sustainable development in chemical industry. For this purpose, noble metal nanoparticles represent a new frontier in catalytic transformations. Many challenges remain for researchers to transform noble metal nanoparticles of heterogeneous catalytic active sites into ionic species of homogeneo...
متن کاملMagnetically Separable Base Catalysts: Heterogeneous Catalysis vs. Quasi-Homogeneous Catalysis
The synthesis of magnetically separable quasi-homogeneous base catalyst and heterogeneous base catalyst is described. The quasi-homogeneous catalyst is achieved by supporting silane monomers functionalized with different amine groups directly on the surface of magnetite nanoparticles. The heterogeneous catalyst is prepared via a sol-gel process in which silane monomers containing different amin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chem
سال: 2021
ISSN: ['2451-9308', '2451-9294']
DOI: https://doi.org/10.1016/j.chempr.2020.12.005